On multidimensional Bohr radii for Banach spaces

Autor: Allu, Vasudevarao, Pal, Subhadip
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we study a more general version of multidimensional Bohr radii for the holomorphic functions defined on unit ball of $\ell^n_q\,\,(1\leq q\leq \infty)$ spaces with values in arbitrary complex Banach spaces. More precisely, we study the multidimensional Bohr radii for bounded linear operators between complex Banach spaces, primarily motivated by the work of A. Defant, M. Maestre, and U. Schwarting [Adv. Math. 231 (2012), pp. 2837--2857]. We obtain the exact asymptotic estimates of multidimensional Bohr radius for both finite and infinite dimensional Banach spaces. As an application, we find the lower bound of arithmetic Bohr radius.
Comment: 19 pp; Some typos has been corrected
Databáze: arXiv