Network Bending of Diffusion Models for Audio-Visual Generation

Autor: Dzwonczyk, Luke, Cella, Carmine Emanuele, Ban, David
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper we present the first steps towards the creation of a tool which enables artists to create music visualizations using pre-trained, generative, machine learning models. First, we investigate the application of network bending, the process of applying transforms within the layers of a generative network, to image generation diffusion models by utilizing a range of point-wise, tensor-wise, and morphological operators. We identify a number of visual effects that result from various operators, including some that are not easily recreated with standard image editing tools. We find that this process allows for continuous, fine-grain control of image generation which can be helpful for creative applications. Next, we generate music-reactive videos using Stable Diffusion by passing audio features as parameters to network bending operators. Finally, we comment on certain transforms which radically shift the image and the possibilities of learning more about the latent space of Stable Diffusion based on these transforms.
Comment: 8 pages, 5 figures, to be published in the proceedings of the 27th International Conference on Digital Audio Effects (DAFx24), for additional image and video examples see https://dzluke.github.io/DAFX2024/
Databáze: arXiv