Thermoelectric transport in molecular crystals driven by gradients of thermal electronic disorder

Autor: Elsner, Jan, Xu, Yucheng, Goldberg, Elliot D., Ivanovic, Filip, Dines, Aaron, Giannini, Samuele, Sirringhaus, Henning, Blumberger, Jochen
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Thermoelectric materials convert a temperature gradient into a voltage. This phenomenon is relatively well understood for inorganic materials, but much less so for organic semiconductors (OSs). These materials present a challenge because the strong thermal fluctuations of electronic coupling between the molecules result in partially delocalized charge carriers that cannot be treated with traditional theories for thermoelectricity. Here we develop a novel quantum dynamical simulation approach revealing in atomistic detail how the charge carrier wavefunction moves along a temperature gradient in an organic molecular crystal. We find that the wavefunction propagates from hot to cold in agreement with experiment and we obtain a Seebeck coefficient in good agreement with values obtained from experimental measurements that are also reported in this work. Detailed analysis of the dynamics reveals that the directional charge carrier motion is due to the gradient in thermal electronic disorder, more specifically in the spatial gradient of thermal fluctuations of electronic couplings. It causes an increase in the density of thermally accessible electronic states, the delocalization of states and the non-adiabatic coupling between states with decreasing temperature. As a result, the carrier wavefunction transitions with higher probability to a neighbouring electronic state towards the cold side compared to the hot side generating a thermoelectric current. Our dynamical perspective of thermoelectricity suggests that the temperature dependence of electronic disorder plays an important role in determining the magnitude of the Seebeck coefficient in this class of materials, opening new avenues for design of OSs with improved Seebeck coefficients.
Databáze: arXiv