Popis: |
Error correction allows a quantum computer to preserve a state long beyond the decoherence time of its physical qubits by encoding logical qubits in a larger number of physical qubits. The leading proposal for a scheme of quantum error correction is based on the surface code, but several recently proposed quantum low-density parity check (qLDPC) codes allow more logical information to be encoded in significantly fewer physical qubits. Key to any scheme of quantum error correction is the decoder, an algorithm that estimates the error state of the qubits from the results of syndrome measurements performed on them. The surface code has a variety of fast and accurate decoders, but the state-of-the-art decoder for general qLDPC codes, BP-OSD, has a high computational complexity. Here we introduce Ambiguity Clustering (AC), an algorithm which seeks to divide the measurement data into clusters which are decoded independently. We benchmark AC on the recently proposed bivariate bicycle codes and find that, at physically realistic error rates, AC is between one and three orders of magnitude faster than BP-OSD with no reduction in logical fidelity. Our CPU implementation of AC is already fast enough to decode the 144-qubit Gross code in real time for neutral atom and trapped ion systems. |