On exact systems $\{t^{\alpha}\cdot e^{2\pi i nt}\}_{n\in\mathbb{Z}\setminus A}$ in $L^2 (0,1)$ which are not Schauder Bases and their generalizations

Autor: Zikkos, Elias
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\{e^{i\lambda_n t}\}_{n\in\mathbb{Z}}$ be an exponential Schauder Basis for $L^2 (0,1)$, for $\lambda_n\in\mathbb{R}$, and let $\{r_n(t)\}_{n\in\mathbb{Z}}$ be its dual Schauder Basis. Let $A$ be a non-empty subset of the integers containing exactly $M$ elements. We prove that for $\alpha >0$ the weighted system \[ \{t^{\alpha}\cdot r_n(t)\}_{n\in\mathbb{Z}\setminus A} \] is exact in the space $L^2 (0,1)$, that is, it is complete and minimal in $L^2 (0,1)$, if and only if \[ M-\frac{1}{2}\le \alpha< M+\frac{1}{2}. \] We also show that such a system is not a Riesz Basis for $L^2 (0,1)$. In particular, the weighted trigonometric system $\{t^{\alpha}\cdot e^{2\pi i n t}\}_{n\in\mathbb{Z}\setminus A}$ is exact in $L^2 (0,1)$, if and only if $\alpha\in [M-\frac{1}{2}, M+\frac{1}{2})$, but it is not a Schauder Basis for $L^2 (0,1)$.
Comment: 8 pages
Databáze: arXiv