The Dynamics of One-Dimensional Quasi-Affine Maps

Autor: Hoseana, Jonathan
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We study the dynamics of the one-dimensional quasi-affine map $x\mapsto \left\lfloor \lambda x +\mu \right\rfloor$, providing a complete description of the map's periodic points, and of the limit points of every $x\in\mathbb{R}$ under the map, for all real parameter values. Specifically, we establish the existence of regions of parameter values for which the map possesses $n$ fixed points for all $n\in\mathbb{N}_0\cup \{\infty\}$, an explicit formula for the number of 2-cycles possessed by the map, and the $\omega$-limit set of any $x\in\mathbb{R}$ under the map, which, depending on the parameter values, is either a singleton of a fixed point, a 2-cycle, $\{-\infty,\infty\}$, $\{\infty\}$, or $\{-\infty\}$.
Comment: 15 pages, 4 figures
Databáze: arXiv