The Dynamics of One-Dimensional Quasi-Affine Maps
Autor: | Hoseana, Jonathan |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the dynamics of the one-dimensional quasi-affine map $x\mapsto \left\lfloor \lambda x +\mu \right\rfloor$, providing a complete description of the map's periodic points, and of the limit points of every $x\in\mathbb{R}$ under the map, for all real parameter values. Specifically, we establish the existence of regions of parameter values for which the map possesses $n$ fixed points for all $n\in\mathbb{N}_0\cup \{\infty\}$, an explicit formula for the number of 2-cycles possessed by the map, and the $\omega$-limit set of any $x\in\mathbb{R}$ under the map, which, depending on the parameter values, is either a singleton of a fixed point, a 2-cycle, $\{-\infty,\infty\}$, $\{\infty\}$, or $\{-\infty\}$. Comment: 15 pages, 4 figures |
Databáze: | arXiv |
Externí odkaz: |