The imprint of dark matter on the Galactic acceleration field

Autor: Arora, Arpit, Sanderson, Robyn E., Chakrabarti, Sukanya, Wetzel, Andrew, Donlon II, Thomas, Horta, Danny, Loebman, Sarah R., Necib, Lina, Oeur, Micah
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Measurements of the accelerations of stars enabled by time-series extreme-precision spectroscopic observations, from pulsar timing, and from eclipsing binary stars in the Solar Neighborhood offer insights into the mass distribution of the Milky Way that do not rely on traditional equilibrium modeling. Given the measured accelerations, we can determine a total mass density, and from this, by accounting for the mass in stars, gas, and dust, we can infer the amount of dark matter. Leveraging the FIRE-2 simulations of Milky Way-mass galaxies, we compare vertical acceleration profiles between cold dark matter (CDM) and self-interacting dark matter (SIDM) with constant cross-section of 1 cm$^2$ g$^{-1}$ across three halos with diverse assembly histories. Notably, significant asymmetries in vertical acceleration profiles near the midplane at fixed radii are observed in both CDM and SIDM, particularly in halos recently affected by mergers with satellites of Sagittarius/SMC-like masses or greater. These asymmetries offer a unique window into exploring the merger history of a galaxy. We show that SIDM halos consistently exhibit higher local stellar and dark matter densities and steeper vertical acceleration gradients, up to 30% steeper near the Solar Neighborhood. SIDM halos also manifest a more oblate halo shape in the Solar Neighborhood. Furthermore, enhanced precision in acceleration measurements and larger datasets promise to provide better constraints on the local dark matter density, complementing our understanding from kinematic analysis of their distribution within galaxies.
Comment: 14 pages, 5 figures, and 2 tables. Submitted to APJ
Databáze: arXiv