Improving Adversarial Robustness via Decoupled Visual Representation Masking

Autor: Liu, Decheng, Chen, Tao, Peng, Chunlei, Wang, Nannan, Hu, Ruimin, Gao, Xinbo
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Deep neural networks are proven to be vulnerable to fine-designed adversarial examples, and adversarial defense algorithms draw more and more attention nowadays. Pre-processing based defense is a major strategy, as well as learning robust feature representation has been proven an effective way to boost generalization. However, existing defense works lack considering different depth-level visual features in the training process. In this paper, we first highlight two novel properties of robust features from the feature distribution perspective: 1) \textbf{Diversity}. The robust feature of intra-class samples can maintain appropriate diversity; 2) \textbf{Discriminability}. The robust feature of inter-class samples should ensure adequate separation. We find that state-of-the-art defense methods aim to address both of these mentioned issues well. It motivates us to increase intra-class variance and decrease inter-class discrepancy simultaneously in adversarial training. Specifically, we propose a simple but effective defense based on decoupled visual representation masking. The designed Decoupled Visual Feature Masking (DFM) block can adaptively disentangle visual discriminative features and non-visual features with diverse mask strategies, while the suitable discarding information can disrupt adversarial noise to improve robustness. Our work provides a generic and easy-to-plugin block unit for any former adversarial training algorithm to achieve better protection integrally. Extensive experimental results prove the proposed method can achieve superior performance compared with state-of-the-art defense approaches. The code is publicly available at \href{https://github.com/chenboluo/Adversarial-defense}{https://github.com/chenboluo/Adversarial-defense}.
Comment: The code is publicly available
Databáze: arXiv