Non-existence of low rank Ulrich bundles on Veronese varieties

Autor: Lopez, Angelo Felice, Raychaudhury, Debaditya
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We show that Veronese varieties of dimension $n \ge 4$ do not carry any Ulrich bundles of rank $r \le 3$. In order to prove this, we prove that a Veronese embedding of a complete intersection of dimension $m \ge 4$, which if $m=4$ is either $\mathbb P^4$ or has degree $d \ge 2$ and is very general and not of type $(2), (2,2)$, does not carry any Ulrich bundles of rank $r \le 3$.
Comment: arXiv admin note: text overlap with arXiv:2405.01154
Databáze: arXiv