Non-existence of low rank Ulrich bundles on Veronese varieties
Autor: | Lopez, Angelo Felice, Raychaudhury, Debaditya |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that Veronese varieties of dimension $n \ge 4$ do not carry any Ulrich bundles of rank $r \le 3$. In order to prove this, we prove that a Veronese embedding of a complete intersection of dimension $m \ge 4$, which if $m=4$ is either $\mathbb P^4$ or has degree $d \ge 2$ and is very general and not of type $(2), (2,2)$, does not carry any Ulrich bundles of rank $r \le 3$. Comment: arXiv admin note: text overlap with arXiv:2405.01154 |
Databáze: | arXiv |
Externí odkaz: |