Conformal metrics of constant scalar curvature with unbounded volumes

Autor: Gong, Liuwei, Li, Yanyan
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: For $n\geq 25$, we construct a smooth metric $\tilde{g}$ on the standard $n$-dimensional sphere $\mathbb{S}^n$ such that there exists a sequence of smooth metrics $\{\tilde{g}_k\}_{k\in\mathbb{N}}$ conformal to $\tilde g$ where each $\tilde g_k$ has scalar curvature $R_{\tilde{g}_k}\equiv 1$ and their volumes $\text{Vol}(\mathbb{S}^n,\tilde{g}_k)$ tend to infinity as $k$ approaches infinity.
Databáze: arXiv