Conformal metrics of constant scalar curvature with unbounded volumes
Autor: | Gong, Liuwei, Li, Yanyan |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For $n\geq 25$, we construct a smooth metric $\tilde{g}$ on the standard $n$-dimensional sphere $\mathbb{S}^n$ such that there exists a sequence of smooth metrics $\{\tilde{g}_k\}_{k\in\mathbb{N}}$ conformal to $\tilde g$ where each $\tilde g_k$ has scalar curvature $R_{\tilde{g}_k}\equiv 1$ and their volumes $\text{Vol}(\mathbb{S}^n,\tilde{g}_k)$ tend to infinity as $k$ approaches infinity. |
Databáze: | arXiv |
Externí odkaz: |