Algebraic solitons in the massive Thirring model
Autor: | Han, Jiaqi, He, Cheng, Pelinovsky, Dmitry E. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We present exact solutions describing dynamics of two algebraic solitons in the massive Thirring model. Each algebraic soliton corresponds to a simple embedded eigenvalue in the Kaup--Newell spectral problem and attains the maximal mass among the family of solitary waves traveling with the same speed. By coalescence of speeds of the two algebraic solitons, we find a new solution for an algebraic double-soliton which corresponds to a double embedded eigenvalue. We show that the double-soliton attains the double mass of a single soliton and describes a slow interaction of two identical algebraic solitons. Comment: 18 pages; 3 figures |
Databáze: | arXiv |
Externí odkaz: |