About F\'uredi's conjecture

Autor: Hegedüs, Gábor
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Let $t$ be a non-negative integer and $\mbox{$\cal P$}=\{(A_i,B_i)\}_{1\leq i\leq m}$ be a set-pair family satisfying $|A_i \cap B_i|\leq t$ for $1\leq i \leq m$. $\mbox{$\cal P$}$ is called strong Bollob\'as $t$-system, if $|A_i\cap B_j|>t$ for all $1\leq i\neq j \leq m$. F\"uredi conjectured the following nice generalization of Bollob\'as' Theorem: Let $t$ be a non-negative integer. Let $\mbox{$\cal P$}=\{(A_i,B_i)\}_{1\leq i\leq m}$ be a strong Bollob\'as $t$-system. Then $$ \sum_{i=1}^m \frac{1}{{|A_i|+|B_i|-2t \choose |A_i|-t}}\leq 1. $$ We confirmed the following special case of F\"uredi's conjecture along with some more results of similar flavor. Let $t$ be a non-negative integer. Let $\mbox{$\cal P$}=\{(A_i,B_i)\}_{1\leq i\leq m}$ denote a strong Bollob\'as $t$-system. Define $a_i:=|A_i|$ and $b_i:=|B_i|$ for each $i$. Assume that there exists a positive integer $N$ such that $a_i+b_i=N$ for each $i$. Then $$ \sum_{i=1}^m \frac{1}{{a_i+b_i-2t \choose a_i-t}}\leq 1. $$
Databáze: arXiv