Continuous Sobolev functions with singularity on arbitrary real-analytic sets

Autor: Pan, Yifei, Zhang, Yuan
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Near every point of a real-analytic set in $\mathbb R^n$, we make use of Hironaka's resolution of singularity theorem to construct a family of continuous functions in $W^{1, 1}_{loc}$ such that their weak derivatives have (removable) singularity precisely on that set.
Comment: 9 pages
Databáze: arXiv