Simple derivations in two variables
Autor: | Parkash, Anand, Shukla, Pankaj |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | $ $Let $k$ be a field of characteristic zero. If $c_1, c_2\in k\setminus \{0\}, s,t\geq 1$ and $u\geq 0$, then it is shown that the $k$-derivations $\partial_x + x^u(c_1x^ty^s+c_2)\partial_y$ and $\partial_x + x^u(c_1x^t+c_2y^{s+1})\partial_y$ of $k[x,y]$ are simple. We also give a necessary and sufficient condition for the $k$-derivation $y^r\partial_x + (c_1x^{t_1}y^{s_1}+c_2x^{t_2}y^{s_2})\partial_y$, where $r, t_1, s_1, t_2, s_2 \geq 0$ and $c_1, c_2\in k$, of $k[x,y]$ to be simple. |
Databáze: | arXiv |
Externí odkaz: |