Dimension formulas for period spaces via motives and species
Autor: | Huber, Annette, Kalck, Martin |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We apply the structure theory of finite dimensional algebras in order to deduce dimension formulas for spaces of period numbers, i.e., complex numbers defined by integrals of algebraic nature. We get a complete and conceptually clear answer in the case of $1$-periods, generalising classical results like Baker's theorem on the logarithms of algebraic numbers and partial results in Huber--W{\"u}stholz \cite{huber-wuestholz}. The application to the case of Mixed Tate Motives (i.e., Multiple Zeta Values) recovers the dimension estimates of Deligne--Goncharov \cite{deligne-goncharov}. Comment: 46 pages. Comments very welcome! |
Databáze: | arXiv |
Externí odkaz: |