Bootstrapping frustrated magnets: the fate of the chiral ${\rm O}(N)\times {\rm O}(2)$ universality class
Autor: | Reehorst, Marten, Rychkov, Slava, Sirois, Benoit, van Rees, Balt C. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study multiscalar theories with $\text{O}(N) \times \text{O}(2)$ symmetry. These models have a stable fixed point in $d$ dimensions if $N$ is greater than some critical value $N_c(d)$. Previous estimates of this critical value from perturbative and non-perturbative renormalization group methods have produced mutually incompatible results. We use numerical conformal bootstrap methods to constrain $N_c(d)$ for $3 \leq d < 4$. Our results show that $N_c> 3.78$ for $d = 3$. This favors the scenario that the physically relevant models with $N = 2,3$ in $d=3$ do not have a stable fixed point, indicating a first-order transition. Our result exemplifies how conformal windows can be rigorously constrained with modern numerical bootstrap algorithms. Comment: 48 pages, 15 figures ; Added references |
Databáze: | arXiv |
Externí odkaz: |