A sharp quantitative estimate of critical sets

Autor: Murdza, Andrew, Nguyen, Khai T.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: The paper establishes a sharp quantitative estimate for the $(d-1)$-Hausdorff measure of the critical set of $\mathcal{C}^1$ vector-valued functions on $\mathbb{R}^d$. Additionally, we prove that for a generic $\mathcal{C}^2$ function where ``generic" is understood in the topological sense of Baire category, the critical set has a locally finite $(d-1)$-Hausdorff measure.
Comment: arXiv admin note: substantial text overlap with arXiv:2312.17462
Databáze: arXiv