On non-topologizable semigroups
Autor: | Gutik, Oleg |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We find anti-isomorphic submonoids $\mathscr{C}_{+}(a,b)$ and $\mathscr{C}_{-}(a,b)$ of the bicyclic monoid $\mathscr{C}(a,b)$ with the following properties: every Hausdorff left-continuous (right-continuous) topology on $\mathscr{C}_{+}(a,b)$ ($\mathscr{C}_{-}(a,b)$) is discrete and there exists a compact Hausdorff topological monoid $S$ which contains $\mathscr{C}_{+}(a,b)$ ($\mathscr{C}_{-}(a,b)$) as a submonoid. Also, we construct a non-discrete right-continuous (left-continuous) topology $\tau_p^+$ ($\tau_p^-$) on the semigroup $\mathscr{C}_{+}(a,b)$ ($\mathscr{C}_{-}(a,b)$) which is not left-continuous (right-continuous). Comment: 9 pages |
Databáze: | arXiv |
Externí odkaz: |