Chordal-NMF with Riemannian Multiplicative Update

Autor: Esposito, Flavia, Ang, Andersen
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Nonnegative Matrix Factorization (NMF) is the problem of approximating a given nonnegative matrix M through the conic combination of two nonnegative low-rank matrices W and H. Traditionally NMF is tackled by optimizing a specific objective function evaluating the quality of the approximation. This assessment is often done based on the Frobenius norm. In this study, we argue that the Frobenius norm as the "point-to-point" distance may not always be appropriate. Due to the nonnegative combination resulting in a polyhedral cone, this conic perspective of NMF may not naturally align with conventional point-to-point distance measures. Hence, a ray-to-ray chordal distance is proposed as an alternative way of measuring the discrepancy between M and WH. This measure is related to the Euclidean distance on the unit sphere, motivating us to employ nonsmooth manifold optimization approaches. We apply Riemannian optimization technique to solve chordal-NMF by casting it on a manifold. Unlike existing works on Riemannian optimization that require the manifold to be smooth, the nonnegativity in chordal-NMF is a non-differentiable manifold. We propose a Riemannian Multiplicative Update (RMU) that preserves the convergence properties of Riemannian gradient descent without breaking the smoothness condition on the manifold. We showcase the effectiveness of the Chordal-NMF on synthetic datasets as well as real-world multispectral images.
Comment: 32 pages, 7 figures, 3 tables. arXiv admin note: text overlap with arXiv:1907.02404 by other authors
Databáze: arXiv