Decoherence of electron spin qubit during transfer between two semiconductor quantum dots at low magnetic fields

Autor: Krzywda, Jan A., Cywiński, Łukasz
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Electron shuttling is one of the currently pursued avenues towards the scalability of semiconductor quantum dot-based spin qubits. We theoretically analyze the dephasing of a spin qubit adiabatically transferred between two tunnel-coupled quantum dots. We focus on the regime where the Zeeman splitting is lower than the tunnel coupling, at which interdot tunneling with spin flip is absent, and analyze the sources of errors in spin-coherent electron transfer for Si- and GaAs-based quantum dots. Apart from the obvious effect of fluctuations in spin splitting in each dot (e.g., due to nuclear Overhauser fields) leading to finite $ T_{2}^{*} $ of the stationary spin qubit, we consider effects activated by detuning sweeps aimed at adiabatic qubit transfer between the dots: failure of charge transfer caused by charge noise and phonons, spin relaxation due to enhancement of spin-orbit mixing of levels, and spin dephasing caused by low- and high-frequency noise coupling to the electron's charge in the presence of differences in Zeeman splittings between the two dots. Our results indicate that achieving coherent transfer of electron spin in a $10\,\mu$m long dot array necessitates a large and uniform tunnel coupling, with a typical value of $ 2t_c \gtrsim 60 \, \mu$eV.
Comment: 11 pages, uploaded reference to code repository: https://github.com/quantumJAK/Decoherence-in-spin-shuttling-code
Databáze: arXiv