On Freiman's Theorem in a function field setting
Autor: | Wessel, Mieke |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove some new instances of a conjecture of Bachoc, Couvreur and Z\'emor that generalizes Freiman's $3k-4$ Theorem to a multiplicative version in a function field setting. As a consequence we find that if $F$ is a rational function field over an algebraically closed field $K$ and $S \subset F$ a finite dimensional $K$-vector space such that $\dim S^2 = 2\dim S + 1$, then the conjecture holds. |
Databáze: | arXiv |
Externí odkaz: |