On Freiman's Theorem in a function field setting

Autor: Wessel, Mieke
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove some new instances of a conjecture of Bachoc, Couvreur and Z\'emor that generalizes Freiman's $3k-4$ Theorem to a multiplicative version in a function field setting. As a consequence we find that if $F$ is a rational function field over an algebraically closed field $K$ and $S \subset F$ a finite dimensional $K$-vector space such that $\dim S^2 = 2\dim S + 1$, then the conjecture holds.
Databáze: arXiv