The Tracking Tapered Gridded Estimator for the 21-cm power spectrum from MWA drift scan observations I: Validation and preliminary results
Autor: | Chatterjee, Suman, Elahi, Khandakar Md Asif, Bharadwaj, Somnath, Sarkar, Shouvik, Choudhuri, Samir, Sethi, Shiv, Patwa, Akash Kumar |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Drift scan observations provide the broad sky coverage and instrumental stability needed to measure the Epoch of Reionization (EoR) 21-cm signal. In such observations, the telescope's pointing center (PC) moves continuously on the sky. The Tracking Tapered Gridded Estimator (TTGE) combines observations from different PC to estimate $P(k_{\perp}, k_{\parallel})$ the 21-cm power spectrum, centered on a tracking center (TC) which remains fixed on the sky. The tapering further restricts the sky response to a small angular region around TC, thereby mitigating wide-field foregrounds. Here we consider $154.2 \, {\rm MHz}$ ($z = 8.2$) Murchison Widefield Array (MWA) drift scan observations. The periodic pattern of flagged channels, present in MWA data, is known to introduce artefacts which pose a challenge for estimating $P(k_{\perp}, k_{\parallel})$. We demonstrate that the TTGE is able to recover $P(k_{\perp}, k_{\parallel})$ without any artefacts, and estimate $P(k)$ within $5 \%$ accuracy over a large $k$-range. We also present preliminary results for a single PC, combining 9 nights of observation $(17 \, {\rm min}$ total). We find that $P(k_{\perp}, k_{\parallel})$ exhibits streaks at a fixed interval of $k_{\parallel}=0.29 \, {\rm Mpc}^{-1}$, which matches $\Delta \nu_{\rm per}=1.28 \, {\rm MHz}$ that is the period of the flagged channels. The streaks are not as pronounced at larger $k_{\parallel}$, and in some cases they do not appear to extend across the entire $k_{\perp}$ range. The rectangular region $0.05 \leq k_{\perp} \leq 0.16 \, {\rm Mpc^{-1}}$ and $0.9 \leq k_{\parallel} \leq 4.6 \, {\rm Mpc^{-1}}$ is found to be relatively free of foreground contamination and artefacts, and we have used this to place the $2\sigma$ upper limit $\Delta^2(k) < (1.85 \times 10^4)^2\, {\rm mK^2}$ on the EoR 21-cm mean squared brightness temperature fluctuations at $k=1 \,{\rm Mpc}^{-1}$. Comment: 15 pages, 11 figures, accepted for publication in PASA |
Databáze: | arXiv |
Externí odkaz: |