Popis: |
Synthesizing high-quality photorealistic images with textual descriptions as a condition is very challenging. Generative Adversarial Networks (GANs), the classical model for this task, frequently suffer from low consistency between image and text descriptions and insufficient richness in synthesized images. Recently, conditional affine transformations (CAT), such as conditional batch normalization and instance normalization, have been applied to different layers of GAN to control content synthesis in images. CAT is a multi-layer perceptron that independently predicts data based on batch statistics between neighboring layers, with global textual information unavailable to other layers. To address this issue, we first model CAT and a recurrent neural network (RAT) to ensure that different layers can access global information. We then introduce shuffle attention between RAT to mitigate the characteristic of information forgetting in recurrent neural networks. Moreover, both our generator and discriminator utilize the powerful pre-trained model, Clip, which has been extensively employed for establishing associations between text and images through the learning of multimodal representations in latent space. The discriminator utilizes CLIP's ability to comprehend complex scenes to accurately assess the quality of the generated images. Extensive experiments have been conducted on the CUB, Oxford, and CelebA-tiny datasets to demonstrate the superiority of the proposed model over current state-of-the-art models. The code is https://github.com/OxygenLu/RATLIP. |