Analyzing Language Bias Between French and English in Conventional Multilingual Sentiment Analysis Models
Autor: | Wong, Ethan Parker, M'hiri, Faten |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Inspired by the 'Bias Considerations in Bilingual Natural Language Processing' report by Statistics Canada, this study delves into potential biases in multilingual sentiment analysis between English and French. Given a 50-50 dataset of French and English, we aim to determine if there exists a language bias and explore how the incorporation of more diverse datasets in the future might affect the equity of multilingual Natural Language Processing (NLP) systems. By employing Support Vector Machine (SVM) and Naive Bayes models on three balanced datasets, we reveal potential biases in multilingual sentiment classification. Utilizing Fairlearn, a tool for assessing bias in machine learning models, our findings indicate nuanced outcomes. With French data outperforming English across accuracy, recall, and F1 score metrics in both models, hinting at a language bias favoring French. However, Fairlearn's metrics suggest that the SVM approaches equitable levels with a demographic parity ratio of 0.963, 0.989, and 0.985 for the three separate datasets, indicating near-equitable treatment across languages. In contrast, Naive Bayes demonstrates greater disparities, evidenced by a demographic parity ratio of 0.813, 0.908, and 0.961. These findings reveal the importance of developing equitable multilingual NLP systems, particularly as we anticipate the inclusion of more datasets in various languages in the future. Comment: Undergraduate Research Project |
Databáze: | arXiv |
Externí odkaz: |