Liouville type theorems for dual nonlocal evolution equations involving Marchaud derivatives
Autor: | Guo, Yahong, Ma, Lingwei, Zhang, Zhenqiu |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we establish a Liouville type theorem for the homogeneous dual fractional parabolic equation \begin{equation} \partial^\alpha_t u(x,t)+(-\Delta)^s u(x,t) = 0\ \ \mbox{in}\ \ \mathbb{R}^n\times\mathbb{R} . \end{equation} where $0<\alpha,s<1$. Under an asymptotic assumption $$\liminf_{|x|\rightarrow\infty}\frac{u(x,t)}{|x|^\gamma}\geq 0 \; ( \mbox{or} \; \leq 0) \,\,\mbox{for some} \;0\leq\gamma\leq 1, $$ in the case $\frac{1}{2} |
Databáze: | arXiv |
Externí odkaz: |