A new modular plethystic $\mathrm{SL}_2(\mathbb{F})$-isomorphism $\mathrm{Sym}^{N-1}E \otimes \bigwedge^{N+1} \mathrm{Sym}^{d+1}E \cong \Delta^{(2,1^{N-1})} \mathrm{Sym}^d E$
Autor: | Martinez, Alvaro L., Wildon, Mark |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $\mathbb{F}$ be a field and let $E$ be the natural representation of $\mathrm{SL}_2(\mathbb{F})$. Given a vector space $V$, let $\Delta^{(2,1^{N-1})}V$ be the kernel of the multiplication map $\bigwedge^N V \otimes V \rightarrow \bigwedge^{N+1}V$. We construct an explicit $\mathrm{SL}_2(\mathbb{F})$-isomorphism $\mathrm{Sym}^{N-1}E \otimes \bigwedge^{N+1} \mathrm{Sym}^{d+1}E \cong \Delta^{(2,1^{N-1})} \mathrm{Sym}^d E$. This $\mathrm{SL}_2(\mathbb{F})$-isomorphism is a modular lift of the $q$-binomial identity $q^{\frac{N(N-1)}{2}}[N]_q \binom{d+1}{N+1}_q = s_{(2,1^{N-1})}(1,q,\ldots, q^d)$, where $s_{(2,1^{N-1})}$ is the Schur function for the partition $(2,1^{N-1})$. This identity, which follows from our main theorem, implies the existence of an isomorphism when $\mathbb{F}$ is the field of complex numbers but it is notable, and not typical of the general case, that there is an explicit isomorphism defined in a uniform way for any field. Comment: 16 pages, 1 figure |
Databáze: | arXiv |
Externí odkaz: |