Quadratic varieties of small codimension
Autor: | Watanabe, Kiwamu |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $X \subset \mathbb P^{n+c}$ be a nondegenerate smooth projective variety of dimension $n$ defined by quadratic equations. For such varieties, P. Ionescu and F. Russo proved the Hartshorne conjecture on complete intersections, which states that X is a complete intersection provided that $n\geq 2c+1$. As the extremal case, they also classified $X$ with $n=2c$. In this paper, we classify $X$ with $n=2c-1$. Comment: 14 pages |
Databáze: | arXiv |
Externí odkaz: |