Perfect state transfer on Cayley graphs over a non-abelian group of order $8n$

Autor: Kalita, Akash, Bhattacharjya, Bikash
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: The \textit{transition matrix} of a graph $\Gamma$ with adjacency matrix $A$ is defined by $H(\tau ) := \exp(-\mathbf{i}\tau A)$, where $\tau \in \mathbb{R}$ and $\mathbf{i} = \sqrt{-1}$. The graph $\Gamma$ exhibits \textit{perfect state transfer} (PST) between the vertices $u$ and $v$ if there exists $\tau_0(>0)\in \mathbb{R}$ such that $\lvert H(\tau_0)_{uv} \rvert = 1$. For a positive integer $n$, the group $V_{8n}$ is defined as $V_{8n} := \langle a,b \colon a^{2n} = b^{4} = 1, ba = a^{-1}b^{-1}, b^{-1}a = a^{-1}b \rangle$. In this paper, we study the existence of perfect state transfer on Cayley graphs $\text{Cay}(V_{8n}, S)$. We present some necessary and sufficient conditions for the existence of perfect state transfer on $\text{Cay}(V_{8n}, S)$.
Databáze: arXiv