Real-World Deployment of a Hierarchical Uncertainty-Aware Collaborative Multiagent Planning System

Autor: Kurtz, Martina Stadler, Prentice, Samuel, Veys, Yasmin, Quang, Long, Nieto-Granda, Carlos, Novitzky, Michael, Stump, Ethan, Roy, Nicholas
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We would like to enable a collaborative multiagent team to navigate at long length scales and under uncertainty in real-world environments. In practice, planning complexity scales with the number of agents in the team, with the length scale of the environment, and with environmental uncertainty. Enabling tractable planning requires developing abstract models that can represent complex, high-quality plans. However, such models often abstract away information needed to generate directly-executable plans for real-world agents in real-world environments, as planning in such detail, especially in the presence of real-world uncertainty, would be computationally intractable. In this paper, we describe the deployment of a planning system that used a hierarchy of planners to execute collaborative multiagent navigation tasks in real-world, unknown environments. By developing a planning system that was robust to failures at every level of the planning hierarchy, we enabled the team to complete collaborative navigation tasks, even in the presence of imperfect planning abstractions and real-world uncertainty. We deployed our approach on a Clearpath Husky-Jackal team navigating in a structured outdoor environment, and demonstrated that the system enabled the agents to successfully execute collaborative plans.
Comment: Accepted to the IEEE ICRA Workshop on Field Robotics 2024
Databáze: arXiv