Curvature and harmonic analysis on compact manifolds

Autor: Sogge, Christopher D.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We discuss problems that relate curvature and concentration properties of eigenfunctions and quasimodes on compact boundaryless Riemannian manifolds. These include new sharp $L^q$-estimates, $q\in (2,q_c]$, $q_c=2(n+1)/(n-1)$, of log-quasimodes that characterize compact connected space forms in terms of the growth rate of $L^q$-norms of such quasimode for these relatively small Lebesgue exponents $q$. No such characterization is possible for any exponent $q> q_c$.
Comment: 5 pages. To appear in ICBS proceedings
Databáze: arXiv