Atypical values at infinity of real polynomial maps with $2$-dimensional fibers
Autor: | Ishikawa, Masaharu, Nguyen, Tat-Thang |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We characterize atypical values at infinity of a real polynomial function of three variables by a certain sum of indices of the gradient vector field of the function restricted to a sphere with a sufficiently large radius. This is an analogy of a result of Coste and de la Puente for real polynomial functions with two variables. We also give a characterization of atypical values at infinity of a real polynomial map whose regular fibers are $2$-dimensional surfaces. Comment: 18 pages, 6 figures |
Databáze: | arXiv |
Externí odkaz: |