Popis: |
Rendering volumetric scattering media, including clouds, fog, smoke, and other complex materials, is crucial for realism in computer graphics. Traditional path tracing, while unbiased, requires many long path samples to converge in scenes with scattering media, and a lot of work is wasted by paths that make a negligible contribution to the image. Methods to make better use of the information learned during path tracing range from photon mapping to radiance caching, but struggle to support the full range of heterogeneous scattering media. This paper introduces a new volumetric rendering algorithm that extends and adapts the previous \emph{path graph} surface rendering algorithm. Our method leverages the information collected through multiple-scattering transport paths to compute lower-noise estimates, increasing computational efficiency by reducing the required sample count. Our key contributions include an extended path graph for participating media and new aggregation and propagation operators for efficient path reuse in volumes. Compared to previous methods, our approach significantly boosts convergence in scenes with challenging volumetric light transport, including heterogeneous media with high scattering albedos and dense, forward-scattering translucent materials, under complex lighting conditions. |