Satisfiability of commutative vs. non-commutative CSPs

Autor: Bulatov, Andrei A., Živný, Stanislav
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: The Mermin-Peres magic square is a celebrated example of a system of Boolean linear equations that is not (classically) satisfiable but is satisfiable via linear operators on a Hilbert space of dimension four. A natural question is then, for what kind of problems such a phenomenon occurs? Atserias, Kolaitis, and Severini answered this question for all Boolean Constraint Satisfaction Problems (CSPs): For 0-Valid-SAT, 1-Valid-SAT, 2-SAT, Horn-SAT, and Dual Horn-SAT, classical satisfiability and operator satisfiability is the same and thus there is no gap; for all other Boolean CSPs, these notions differ as there are gaps, i.e., there are unsatisfiable instances that are satisfiable via operators on Hilbert spaces. We generalize their result to CSPs on arbitrary finite domains and give an almost complete classification: First, we show that NP-hard CSPs admit a separation between classical satisfiability and satisfiability via operators on finite- and infinite-dimensional Hilbert spaces. Second, we show that tractable CSPs of bounded width have no satisfiability gaps of any kind. Finally, we show that tractable CSPs of unbounded width can simulate, in a satisfiability-gap-preserving fashion, linear equations over an Abelian group of prime order $p$; for such CSPs, we obtain a separation of classical satisfiability and satisfiability via operators on infinite-dimensional Hilbert spaces. Furthermore, if $p=2$, such CSPs also have gaps separating classical satisfiability and satisfiability via operators on finite- and infinite-dimensional Hilbert spaces.
Comment: v2: the main result now omits one case, but also includes infinite-dimensional operators
Databáze: arXiv