Exponential sums over integers without large prime divisors
Autor: | Shparlinski, Igor E. |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We obtain a new bound on exponential sums over integers without large prime divisors, improving that of Fouvry and Tenenbaum (1991). The improvement is based on exploiting the trilinear structure of certain exponential sums, appearing in the argument. We combine this idea with some input from additive combinatorics and, for a fixed integer $\nu\ne 0$, we also obtain new bounds on exponential sums with $\nu$-th powers of such integers. |
Databáze: | arXiv |
Externí odkaz: |