Compactly supported $\mathbb{A}^1$-Euler characteristics of symmetric powers of cellular varieties

Autor: Pajwani, Jesse, Rohrbach, Herman, Viergever, Anna M.
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: The compactly supported $\mathbb{A}^1$-Euler characteristic, introduced by Hoyois and later refined by Levine and others, is an anologue in motivic homotopy theory of the classical Euler characteristic of complex topological manifolds. It is an invariant on the Grothendieck ring of varieties $\mathrm{K}_0(\mathrm{Var}_k)$ taking values in the Grothendieck-Witt ring $\mathrm{GW}(k)$ of the base field $k$. The former ring has a natural power structure induced by symmetric powers of varieties. In a recent preprint, Pajwani and P\'al construct a power structure on $\mathrm{GW}(k)$ and show that the compactly supported $\mathbb{A}^1$-Euler characteristic respects these two power structures for $0$-dimensional varieties, or equivalently \'etale $k$-algebras. In this paper, we define the class $\mathrm{Sym}_k$ of symmetrisable varieties to be those varieties for which the compactly supported $\mathbb{A}^1$-Euler characteristic respects the power structures and study the algebraic properties of $\mathrm{K}_0(\mathrm{Sym}_k)$. We show that it includes all cellular varieties, and even linear varieties as introduced by Totaro. Moreover, we show that it includes non-linear varieties such as elliptic curves. As an application of our main result, we compute the compactly supported $\mathbb{A}^1$-Euler characteristics of symmetric powers of Grassmannians and certain del Pezzo surfaces.
Comment: 23 pages
Databáze: arXiv