The asymptotic distribution of the scaled remainder for pseudo golden ratio expansions of a continuous random variable
Autor: | Herbst, Ira W., Møller, Jesper, Svane, Anne Marie |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $X=\sum_{k=1}^\infty X_k \beta^{-k}$ be the base-$\beta$ expansion of a continuous random variable $X$ on the unit interval where $\beta$ is the positive solution to $\beta^n = 1 + \beta + \cdots + \beta^{n-1}$ for an integer $n\ge 2$ (i.e., $\beta$ is a generalization of the golden mean for which $n=2$). We study the asymptotic distribution and convergence rate of the scaled remainder $\sum_{k=1}^\infty X_{m+k} \beta^{-k}$ when $m$ tends to infinity. Comment: 13 pages |
Databáze: | arXiv |
Externí odkaz: |