Subcritical Fourier uncertainty principles

Autor: Saucedo, Miquel, Tikhonov, Sergey
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: It is well known that if a function $f$ satisfies $$\|f(x) e^{\pi \alpha |x|^2}\|_p + \| \widehat{f}(\xi) e^{\pi \alpha |\xi|^2} \|_q<\infty \qquad\qquad\qquad(*)$$ with $\alpha=1$ and $1\le p,q<\infty$, then $f\equiv 0.$ We prove that if $f$ satisfies $(*)$ with some $0<\alpha<1$ and $1\le p,q\leq \infty$, then $$ |f(y)|\le C (1+|y|)^{\frac{d}{p}} e^{- \pi \alpha |y|^2}, \quad y\in \mathbb{R}^d, $$ with $ C=C(\alpha,d,p,q)$ and this bound is sharp for $p\neq 1$. We also study a related uncertainty principle for functions satisfying $\;\;\displaystyle\|f(x)|x|^m\|_p+ \|\widehat{f}(\xi)|\xi|^n\|_q <\infty.$
Comment: 30 pages; Remark 1.4 (vii), Acknowledgements, and Proposition 5.5 added
Databáze: arXiv