Ginzburg-Landau description for multicritical Yang-Lee models
Autor: | Lencsés, Máté, Miscioscia, Alessio, Mussardo, Giuseppe, Takács, Gábor |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We revisit and extend Fisher's argument for a Ginzburg-Landau description of multicritical Yang-Lee models in terms of a single boson Lagrangian with potential $\varphi^2 (i \varphi)^n$. We explicitly study the cases of $n=1,2$ by a Truncated Hamiltonian Approach based on the free massive boson perturbed by $\boldsymbol P \boldsymbol T$ symmetric deformations, providing clear evidence of the spontaneous breaking of $\boldsymbol P \boldsymbol T$ symmetry. For $n=1$, the symmetric and the broken phases are separated by the critical point corresponding to the minimal model $\mathcal M(2,5)$, while for $n=2$, they are separated by a critical manifold corresponding to the minimal model $\mathcal M(2,5)$ with $\mathcal M(2,7)$ on its boundary. Our numerical analysis strongly supports our Ginzburg-Landau descriptions for multicritical Yang-Lee models. Comment: 28 pages, 10 figures |
Databáze: | arXiv |
Externí odkaz: |