On certain kernel functions and shifted convolution sums of Hecke eigenvalues

Autor: Wang, Youjun
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Let $j\geq 2$ be a given integer. Let $f$ be a normalized primitive holomorphic cusp form of even integral weight for the full modular group $\Gamma=SL(2,\mathbb{Z})$. Denote by $\lambda_{\text{sym}^{j}f}(n)$ the $n$th normalized coefficient of the Dirichlet expansion of the $j$th symmetric power $L$-function $L(s,\text{sym}^{j}f)$. In this paper, we are interested in the behavior of the shifted convolution sum involving $\lambda_{\text{sym}^{j}f}(n)$ with a weight function to be the $k$-full kernel function for any fixed integer $k\geq 2$.
Comment: 14 pages
Databáze: arXiv