Autor: |
Bian, Jichen, Tan, Chong, Tang, Peiyao, Zheng, Min |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
IEEE Signal Processing Letters, 2024 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1109/LSP.2024.3397160 |
Popis: |
Wireless sensing technologies become increasingly prevalent due to the ubiquitous nature of wireless signals and their inherent privacy-friendly characteristics. Device-free personnel identity recognition, a prevalent application in wireless sensing, is susceptibly challenged by imbalanced channel state information (CSI) datasets. This letter proposes a novel method for CSI dataset augmentation that employs Conditional Denoising Diffusion Probabilistic Models (C-DDPMs) to generate additional samples that address class imbalance issues. The augmentation markedly improves classification accuracies on our homemade dataset, elevating all classes to above 94%. |
Databáze: |
arXiv |
Externí odkaz: |
|