Bounds and Limiting Minimizers for a Family of Interaction Energies
Autor: | Davies, Cameron |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study a two parameter family of energy minimization problems for interaction energies $\mathcal{E}_{\alpha,\beta}$ with attractive-repulsive potential $W_{\alpha,\beta}$. We develop a concavity principle, which allows us to provide a lower bound on $\mathcal{E}_{\alpha,\beta}$ if there exist $\beta_0<\beta<\beta_1$ with minimizers of $\mathcal{E}_{\alpha,\beta_0}$ and $\mathcal{E}_{\alpha,\beta_1}$ known. In addition to this, we also derive new conclusions about the limiting behaviour of $\mathcal{E}_{\alpha,\beta}$ for $\beta\approx 2.$ Finally, we describe a method to show that, for certain values of $(\alpha,\beta),$ $\mathcal{E}_{\alpha,\beta}$ cannot be minimized by the uniform distribution over a top-dimensional regular unit simplex. Our results are made possible by two key factors -- recent progress in identifying minimizers of $\mathcal{E}_{\alpha,\beta}$ for a range of $\alpha$ and $\beta$, and an analysis of $\inf\mathcal{E}_{\alpha,\beta}$ as a function on parameter space. Comment: 22 pages, 1 figure |
Databáze: | arXiv |
Externí odkaz: |