Compact moduli of marked noncommutative cubic surfaces
Autor: | Abdelgadir, Tarig, Okawa, Shinnosuke, Ueda, Kazushi |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We introduce a compact moduli scheme of marked noncommutative cubic surfaces as the GIT moduli scheme of relations of a quiver associated with a full strong exceptional collection on a cubic surface. It is a toric variety containing the configuration space of six points on a plane in general position as a locally closed subvariety, and birationally parametrizes a class of AS-regular $\mathbb{Z}$-algebras. Comment: 29 pages |
Databáze: | arXiv |
Externí odkaz: |