A computation of two-loop six-point Feynman integrals in dimensional regularization
Autor: | Henn, Johannes M., Matijašić, Antonela, Miczajka, Julian, Peraro, Tiziano, Xu, Yingxuan, Zhang, Yang |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We compute three families of two-loop six-point massless Feynman integrals in dimensional regularization, namely the double-box, the pentagon-triangle, and the hegaxon-bubble family. This constitutes the first analytic computation of two-loop master integrals with eight scales. We use the method of canonical differential equations. We describe the corresponding integral basis with uniform transcendentality, the relevant function alphabet, and analytic boundary values at a particular point in the Euclidean region up to the fourth order in the regularization parameter $\epsilon$. The results are expressed as one-fold integrals over classical polylogarithms suitable for fast and high-precision evaluation. Comment: 35 pages, 5 figures |
Databáze: | arXiv |
Externí odkaz: |