Popis: |
In this work, we present three linear numerical schemes to model nematic liquid crystals using the Landau-de Gennes $\textbf{Q}$-tensor theory. The first scheme is based on using a truncation procedure of the energy, which allows for an unconditionally energy stable first order accurate decoupled scheme. The second scheme uses a modified second order accurate optimal dissipation algorithm, which gives a second order accurate coupled scheme. Finally, the third scheme uses a new idea to decouple the unknowns from the second scheme which allows us to obtain accurate dynamics while improving computational efficiency. We present several numerical experiments to offer a comparative study of the accuracy, efficiency and the ability of the numerical schemes to represent realistic dynamics. |