Autor: |
Barkatou, Moulay A., Legrand, Lucas, Vaccon, Tristan |
Rok vydání: |
2024 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
Polyhedral affinoid algebras have been introduced by Einsiedler, Kapranov and Lind to connect rigid analytic geometry (analytic geometry over non-archimedean fields) and tropical geometry.In this article, we present a theory of Gr{\"o}bner bases for polytopal affinoid algebras that extends both Caruso et al.'s theory of Gr{\"o}bner bases on Tate algebras and Pauer et al.'s theory of Gr{\"o}bner bases on Laurent polynomials.We provide effective algorithms to compute Gr{\"o}bner bases for both ideals of Laurent polynomials and ideals in polytopal affinoid algebras. Experiments with a Sagemath implementation are provided. |
Databáze: |
arXiv |
Externí odkaz: |
|