LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models

Autor: Zheng, Yaowei, Zhang, Richong, Zhang, Junhao, Ye, Yanhan, Luo, Zheyan, Feng, Zhangchi, Ma, Yongqiang
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: Efficient fine-tuning is vital for adapting large language models (LLMs) to downstream tasks. However, it requires non-trivial efforts to implement these methods on different models. We present LlamaFactory, a unified framework that integrates a suite of cutting-edge efficient training methods. It provides a solution for flexibly customizing the fine-tuning of 100+ LLMs without the need for coding through the built-in web UI LlamaBoard. We empirically validate the efficiency and effectiveness of our framework on language modeling and text generation tasks. It has been released at https://github.com/hiyouga/LLaMA-Factory and received over 25,000 stars and 3,000 forks.
Comment: 13 pages, accepted to ACL 2024 System Demonstration Track
Databáze: arXiv