Popis: |
In this paper, we investigate some priori estimates to provide the critical regularity criteria for incompressible Navier-Stokes equations on $\mathbb{R}^3$ and super critical surface quasi-geostrophic equations on $\mathbb{R}^2$. Concerning the Navier-Stokes equation, we demonstrate that a Leray-Hopf solution $u$ is regular if $u\in L_T^{\frac{2}{1-\alpha}} \dot{B}^{-\alpha}_{\infty,\infty}(\mathbb{R}^3)$, or $u$ in Lorentz space $ L_T^{p,r} \dot{B}^{-1+\frac{2}{p}}_{\infty,\infty}(\mathbb{R}^3)$, with $4\leq p\leq r<\infty$. Additionally, an alternative regularity condition is expressed as $u\in L_{T}^{\frac{2}{1-\alpha}} \dot{B}^{-\alpha}_{\infty,\infty}(\mathbb{R}^3)+{L_T^\infty\dot{B}^{-1}_{\infty,\infty}}(\mathbb{R}^3)$($\alpha\in(0,1)$), contingent upon a smallness assumption on the norm $L_T^\infty\dot{B}^{-1}_{\infty,\infty}$. For the SQG equation, we derive that a Leray-Hopf weak solution $\theta\in L_T^{\frac{\alpha}{\varepsilon}} \dot{C}^{1-\alpha+\epsilon}(\mathbb{R}^2)$ is smooth for any $\varepsilon$ small enough. Similar to the case of Navier-Stokes equation, we derive regularity criterion in more refined spaces, i.e. Lorentz spaces $L_T^{\frac{\alpha}{\epsilon},r}\dot{C}^{1-\alpha+\epsilon}(\mathbb{R}^2)$ and addition of two critical spaces $L_{T}^{\frac{\alpha}{\epsilon}}\dot{C}^{1-\alpha+\epsilon}(\mathbb{R}^2)+{L_T^\infty\dot{C}^{1-\alpha}(\mathbb{R}^2)}$, with smallness assumption on $L_T^\infty\dot{C}^{1-\alpha}(\mathbb{R}^2)$. |