A priori estimates for parabolic Monge-Amp\`ere type equations
Autor: | Zhou, Yang, Zhu, Ruixuan |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove the existence and regularity of convex solutions to the first initial-boundary value problem of the parabolic Monge-Amp\`ere equation $$ \left\{\begin{eqnarray} &u_t=\det D^2u\quad\text{ in } Q_T, \\ &u=\phi\quad\text{ on }\partial_pQ_T, \end{eqnarray}\right. $$ where $\phi$ is a smooth function, $Q_T=\Omega\times(0,T]$, $\partial_p Q_T$ is the parabolic boundary of $Q_T$, and $\Omega$ is a uniformly convex domain in $\mathbb{R}^n$ with smooth boundary. Our approach can also be used to prove similar results for $\gamma$-Gauss curvature flow with any $0<\gamma\le 1$. Comment: 27 pages |
Databáze: | arXiv |
Externí odkaz: |