Popis: |
We study the microlocal regularity of the analytic/Gevrey vectors for the following class of second order partial differential equations \begin{align*} P(x,D) = \sum_{\ell,j=1}^{n} a_{\ell,j}(x) D_{\ell} D_{j} + \sum_{\ell=1}^{n} i b_{\ell}(x) D_{\ell} +c(x), \end{align*} where $a_{\ell,j}(x) = a_{j,\ell}(x)$, $b_{\ell}(x)$, $\ell,j \in \lbrace 1,\dots,\, n\rbrace$, are real valued real Gevrey functions of order $s$ and $c(x)$ is a Gevrey function of order $s$, $s \geq 1$, on $\Omega$ open neighborhood of the origin in $\mathbb{R}^{n}$. Thus providing a microlocal version of a result due to M. Derridj in "Gevrey regularity of Gevrey vectors of second order partial differential operators with non negative characteristic form", Complex Anal. Synerg. $\mathbf{6}$, 10 (2020), https://doi.org/10.1007/s40627-020-00047-8. |