Stability of Hardy-Sobolev Inequality
Autor: | Chakraborty, Souptik |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Given $N\geq 3,$ we consider the critical Hardy-Sobolev equation $-\Delta u-\frac{\gamma}{|x|^2}u=\frac{|u|^{2^*(s)-2}u}{|x|^s}$ in $\mathbb{R}^N\setminus \{0\},$ where $0<\gamma<\gamma_{H}:=\left(\frac{N-2}{2}\right)^2,\,s\in (0,2)$ and $2^*(s)=\frac{2(N-s)}{(N-2)}.$ We prove a stability estimate for the corresponding Hardy-Sobolev inequality in the spirit of Bianchi-Egnell (1991). Also, we obtain a Struwe-type decomposition (1984) for the corresponding Euler-Lagrange equation. Finally, we prove a quantitative bound for one bubble, namely $\operatorname{dist}(u,\mathcal{M})\lesssim \Gamma(u)$ in the spirit of Ciraolo-Figalli-Maggi (2017). Comment: 24 pages |
Databáze: | arXiv |
Externí odkaz: |